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Abstract
The sustained growth of carbon emissions and global waste
elicits significant sustainability concerns for our environ-
ment’s future. The growing Internet of Things (IoT) has the
potential to exacerbate this issue. However, an emerging area
known as Tiny Machine Learning (TinyML) has the opportu-
nity to help address these environmental challenges through
sustainable computing practices. TinyML, the deployment of
machine learning (ML) algorithms onto low-cost, low-power
microcontroller systems, enables on-device sensor analytics
that unlocks numerous always-on ML applications. This ar-
ticle discusses the potential of these TinyML applications to
address critical sustainability challenges, as well as the envi-
ronmental footprint of this emerging technology. Through
life cycle analysis (LCA), we find TinyML systems present
opportunities to offset their carbon emissions by enabling
applications that reduce emissions from other sectors. Never-
theless, when globally scaled, the carbon footprint of TinyML
systems is not negligible, necessitating designers factor in
environmental impact when formulating new devices.1

1 Introduction
The continued growth of carbon emissions and global waste
presents a great concern for our environment, increasing
calls for a more sustainable future. In response, the United
Nations’ (UN) 2030 Agenda for Sustainable Development
established a shared framework aiming toward peace and
prosperity for people and the planet. At its core are 17 Sus-
tainable Development Goals (SDGs) [28], a call to action
for all countries to work towards a more environmentally,
economically, and socially sustainable future.
Tiny machine learning (TinyML), which enables ML on

microcontroller devices, holds potential for addressing nu-
merous SGDs, particularly those related to environmental
sustainability (see Figure 1). While TinyML’s operational
benefits for sustainability are often highlighted, it is cru-
cial to consider the entire life cycle of both applications and
hardware to ensure a net carbon reduction. This paper con-
tributes by (1) presenting case studies illustrating TinyML’s
sustainability benefits, (2) examining the environmental im-
pacts of TinyML at both MCU and system levels through a

1Please refer to our full-length manuscript for citations: https://dl.acm.org/
doi/abs/10.1145/3608473.
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Figure 1.We show the positive (green arrows) and negative
(red arrows) environmental footprint of the complete life
cycle of TinyML systems as well as how TinyML can con-
tribute to the UN’s environmental sustainability goals.

life cycle analysis (LCA), and (3) identifying future research
directions for sustainable TinyML.

2 Tiny Machine Learning (TinyML)
TinyML is the deployment of machine learning (ML) algo-
rithms onto low-cost, low-power, and resource-constrained
MCU systems. TinyML stores neural networkmodels directly
within memory (e.g., flash) and runs inference directly on the
output of onboard sensors. This approach enables intelligent
on-device sensor analytics unavailable with traditional Inter-
net of Things (IoT) approaches, which instead typically rely
on external cloud processing. Importantly, TinyML achieves
this using a fraction of the compute resources needed for
traditional ML systems. Table 1 shows how TinyML requires
orders of magnitude fewer resources across compute, mem-
ory, storage, power, and cost than traditional BigML (such
as cloud and mobile systems). With more than 250 billion
MCUs deployed globally today, and the cost of MCUs ex-
pected to drop below $0.50 per unit, this number is expected
to grow, eclipsing 40 billion MCUs shipped per annum in the
next decade [22]. For these reasons, along with bandwidth,
latency, energy, reliability, and privacy concerns, running
ML directly on these embedded edge devices is growing in
popularity. As such, TinyML will become an ever-present
technology. But the question we must ask ourselves is do we

https://dl.acm.org/doi/abs/10.1145/3608473
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Platform Freq. Memory Storage Power Price CO2-eq Footprint

Cloud GHz 10+GB TBs-PBs ∼1 kW $1000+ Hundreds of kgs

Mobile GHz Few GB GBs ∼1 W $100+ Tens of kgs

Tiny MHz KBs Few MB ∼1 mW $10 Single kgs

Table 1. Cloud and mobile ML systems compared with
TinyML across frequency, memory, storage, power, price,
and footprint. The footprint of TinyML systems is far less.

run the risk of producing an Internet of Trash over the course
of TinyML devices’ lifetime?

3 Applications of TinyML for Sustainability
To fairly evaluate the environmental impacts of machine
learning on microcontrollers, we must consider TinyML’s
benefits. Typical well-known consumer-facing applications
of TinyML include keyword spotting, image classification,
and anomaly detection [3]. However, many emerging appli-
cations of TinyML can be used to enable a more sustainable
future [2] and aid environment-related SDGs (Figure 1).

For example, Nuru, a mobile and cloud-based ML app from
the PlantVillage project, helps increase agriculture produc-
tion by detecting plant diseases and enabled one farmer to in-
crease her revenue by 55% and yields by 146% [5, 17]. TinyML
can also be used to aid in our health and well-being. Using
Edge Impulse [10], a development platform for TinyML, a sys-
tem was prototyped to identify the deadliest mosquitoes us-
ing wing beats sound classification with 88.3% accuracy [27].
TinyML can also boost conservation and biodiversity ef-

forts by enhancing distributed sensing networks, such as
resolving human-elephant conflicts in Asia and Africa. By
only transmitting notifications of elephant detection instead
of full video streams to the cloud, RESOLVE’s WildEyes AI
camera can run for more than 1.5 years on a single battery [8].

Combating climate change is another SDG that TinyML is
well-suited for through environmental monitoring applica-
tions. For example, the SmartForest project utilizes a remote
monitoring system to understand tree growth patterns. This
replaced the need for 150-160 employees to regularly go
into the field with a single sensor install trip [7]. Climate
change has contributed to the widespread decline of essential
pollinators like bumble bees [23]. TinyML can help provide
intelligence to artificial pollinators like the Robobee [30].
TinyML can also further improve upon the 20-40% reduction
in building energy usage [1, 16] enabled by smart occupancy
systems that control lighting, automated window shading,
and HVAC. See the full manuscript for further examples.

4 Quantifying the Sustainability of TinyML
The benefits of ML on microcontrollers for environmental
sustainability and beyond will continue to fuel the Internet
of Things (IoT) revolution, connecting billions of devices
around us. To better understand the environmental costs
associated with TinyML, an LCA of the complete TinyML

system (i.e., MCU plus peripherals and power supply) is
performed. This analysis demonstrates that the footprint of
MCUs and TinyML systems individually is relatively small.
When this analysis is expanded to consider the global scaled
impact of TinyML, the impact could be substantial if TinyML
is not used for sustainable applications.

4.1 Environmental Impact of MCUs
The TinyML life cycle analysis starts at the MCU level with
publicly accessible data from STMicroelectronics [25].2 The
hardware life cycle of an MCU can typically be broken down
into five stages: 1) extraction and treatment of raw materi-
als, 2) product manufacturing, 3) transport and distribution,
4) product use, and 5) end of life. Taking these stages into
account, there are four different environmental indicators,
as shown in Figure 3, that can be used to analyze the foot-
print of the processing hardware required for TinyML: water
demand, freshwater eutrophication, photochemical oxidant
formation, and climate change. Across all four indicators,
production is the dominant driver of an MCU’s environmen-
tal footprint, as noted in previous work [14, 31]. However,
the exact breakdown varies across indicators (Figure 3).
Overall, we find that the carbon footprint of an MCU is

390 g CO2-eq. For perspective, this footprint is equivalent
to a gasoline-powered car driving 1.6 km. Given that cars
typically drive hundreds of thousands of miles over their life-
time, a single MCU alone has minimal impact in the context
of everyday human actions. In the following section, CO2
emissions are used as the primary measure due to their wide
acceptance for assessing environmental impact.

4.2 Footprint of TinyML Systems
MCUs are the heart of TinyML systems, but we must con-
sider the additional components that constitute a complete
TinyML system to get a more accurate picture of the com-
plete footprint. To do so, we developed an open-source TinyML
Footprint Calculator.3 Our calculator leverages the raw data
from a study by Pirson and Bol [18] assessing the embodied
carbon footprint of IoT devices. Pirson and Bol break down
the general architecture and hardware profile of an IoT edge
device into a collection of basic functional blocks but only
capture the embodied footprint. As such, we additionally
model and capture the product use stage (i.e., operational
footprint) and end-of-life stage of the hardware life cycle.
Breaking Down TinyML’s Footprint. The calculated

footprint of TinyML systems is broken down into three sce-
narios. The “Low-Cost Profile” scenario represents a key-
word spotting application that requires only a simple mi-
crophone sensor. The “Medium-Cost Profile” scenario rep-
resents an image classification application that requires a
much larger camera sensor. The “High-Cost Profile” scenario

2The general trends hold for other MCU manufacturers.
3Available at https://github.com/harvard-edge/TinyML-Footprint
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Figure 2. A breakdown of different TinyML system footprints highlights that the footprint is largely attributable to the
embodied footprint of the power supply, onboard sensors, and transportation. Note that actuator and connectivity blocks from
Pirson and Bol [18] are encapsulated in “Other" and “Processing", respectively, while “Product Use" captures the operational
footprint. The carbon footprint of Apple’s Series 7 Watch [12] and 16-inch MacBook Pro [11] are also provided for reference. For
more details and to compute the footprint of your own TinyML system, see https://github.com/harvard-edge/TinyML-Footprint.

Figure 3. Four different environmental indicators measuring
the impact of MCUs on our environment. Each footprint
contains both the operational and embodied footprint of the
device, including the five-stage life cycle of an MCU. Data
courtesy of STMicroelectronics [25].

Figure 4. If all 250 billion MCUs were TinyML systems with
three-year lifespans, their worst-case footprint would be 1765
million metric tons of CO2. If these systems enabled a 20%
emissions reduction for the residential sector and only a 0.6%
reduction for all other sectors, the total footprint would be
net-zero. Anything larger (e.g., 20%) results in more carbon
savings from TinyML than emissions.

again uses image classification, instead using upper bound
carbon emission values for components provided in Pirson
and Bol [18].
As the stacked bar graph on the right side of Figure 2

shows, the embodied footprint of all components is much
greater than the system’s operational footprint (captured

in “Product Use”). This result aligns with previous litera-
ture suggesting that manufacturing dominates the environ-
mental footprint of small electronics [14, 31]. Moreover, the
figure highlights the embodied footprint of the additional
components excluding the MCU and the manufacturing and
distribution costs. In particular, the embodied footprint of
tne battery dominates all other components. To provide a
baseline reference, we compared our results with the Apple
Watch Series 7 [12] (representative of an “edge" device) and
a 16-inch MacBook Pro (representative of traditional com-
puting hardware), as shown on the left of Figure 2. We find
that a TinyML system’s footprint is 5-38× smaller than an
Apple Watch [12] and 49-392× smaller than a Macbook [11].

4.3 TinyML at Scale
To better understand the net effect of TinyML at scale, this
section assesses what happens to TinyML’s footprint if these
systems are scaled to the number of MCUs deployed glob-
ally, which currently sits at around 250 billion, using the
“High-cost Profile”, to provide an upper-bound. This scenario
results in a combined, non-trivial global carbon footprint
of 1765 million metric tons of CO2-eq. However, there are
existing examples (e.g., [1, 16]) of simple, intelligent IoT de-
vices which can reduce building CO2 emissions by at least
20%. If such savings were applied to the entire residential
home sector over three years (green bar in Figure 4), 1181 mil-
lion metric tons of CO2-eq would be avoided. These avoided
emissions alone would offset 67% of the worst-case costs
of TinyML. As the residential sector only represents 6% of
total global emissions, if remaining TinyML devices were
able to reduce emissions from all other sectors by as little
as 0.6% on average (orange bar), then TinyML would break
even from an emissions standpoint. Furthermore, if we were
to extrapolate this 20% reduction in the residential sector
to all sectors (yellow bar) we would see a net reduction in
global CO2 emissions by over 18.4 billion metric tons.
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5 Discussion
Prior claims regarding the use of digital technologies for
greenhouse gas emissions mitigation do not always address
critical aspects which can result in overestimated benefits [20].
Thus, in this section, we recognize limitations of our analysis
and discuss factors to be considered in future work.
Limitations of Our Study: One major limitation is the

lack of publicly available data on the environmental impact
of modern digital electronics which makes it difficult for
our analysis to be detailed and precise. Another important
consideration is Jevons’ paradox (or rebound effect), which
suggests that advancements in efficiency can lead to an over-
all increase in consumption and a negative impact on the
environment. Finally, it is also important to note that our
analysis approximates carbon savings from TinyML solu-
tions by comparing with a baseline with no intervention.
However, alternative (non-TinyML) approaches could also
be made to save emissions (e.g., behavioral changes or man-
ual efforts by humans to reduce building emissions) that
future works should compare with.
Considerations for Future Studies Several additional

factors should be considered in future complementary stud-
ies. For example, our study assumes all 250 billion exist-
ing MCUs are TinyML systems but exponential IoT device
growth could limit TinyML’s impact. Moreover, our analysis
assumes the MCU is fabricated using 90nm CMOS technol-
ogy [18]. However, the environmental impact of semiconduc-
tor manufacturing increases with each successive technology
node. For example, Bardon et al. [4] shows a 2.5× increase in
greenhouse gas emissions per wafer when scaling from 28nm
to 3nm. Furthermore, our study assumes a three-year device
lifetime in order to compare with LCA’s from other vendors.
Finally, while our study concludes that TinyML devices can
elicit an overall positive impact on the environment (with
respect to carbon emission savings and global warming), it
is important consider the many other environmental factors
(Section 4.1), as well as societal and human costs.

6 Future Sustainable TinyML
In this section, wewill discuss the broader implications of our
study and suggest ways to make TinyML more sustainable.

Energy Harvesting. Our analysis in Section 4.2 revealed
that the batteries used to power TinyML devices dominate
their environmental impact. Batteries also present several
other environmental issues, such as pollution and the re-
lease of carcinogens [15], particularly due to the extraction
of lithium [26]. Research in energy harvesting [21] needs
to be prioritized to make “batteryless" TinyML the standard
practice. Furthermore, advancements in intermittent com-
puting [9] could further reduce power requirements.
Efficient Sensing. Using smaller (e.g., camera vs. iner-

tial measurement unit) or lower-quality sensors (e.g., low-
vs. high-resolution camera) combined with more advanced

TinyML models, or leveraging sensor fusion, using multiple
small sensors, could potentially reduce the overall footprint
while achieving the same performance [6].

Datasheets for ML Sensors. Greater transparency re-
garding the system’s data and costs is needed to deploy
these TinyML devices safely and ethically. One solution to
address privacy concerns is to separate the input sensor
data and ML processing from the rest of the system at the
hardware level [29]. Also, new supplementary information
is needed in the form of a datasheet that builds upon tradi-
tional datasheets used for electrical components to enable
transparency to end users, including information about the
environmental impact and LCA of the device [24].
Datasets for Low-Resource Domains.Many TinyML

applications depend on real-world data, which can be chal-
lenging to obtain, particularly in public domains. To foster
TinyML development, there is a need for extensive, open-
access datasets focused on low-resource, high-impact sensor-
based problems, akin to ImageNet for TinyML.
Emerging Technologies. New technologies are being

developed that could lead to more sustainable TinyML prac-
tices. One example includes flexible electronics: PragmatIC
Semiconductor has reported less than half of a single gram
of CO2-eq manufacturing such integrated circuits [19].

Recycle andUpcycle. TinyML can potentially exacerbate
the problem of electronic waste. However, recycling and
reusing TinyML devices is a viable option as many of the
algorithms can run on standard MCU hardware, extending
the MCU life and reducing the amount of landfill waste.
Accessibility. Finally, for TinyML to have a significant

impact on a global scale, there is a need for global access
to hardware and educational resources. Recent efforts, led
by the TinyML foundation and the TinyML Open Education
Initiative4, among others, have developed open-source mate-
rials and provided low- or no-cost hardware to learners [13].

7 Conclusion
ML on microcontrollers can have a significant impact on en-
vironmental sustainability, potentially improving efficiency
in various sectors and enabling significant reductions in car-
bon emissions. This assessment shows that TinyML’s carbon
footprint could be offset by using the technology to reduce
emissions from other economic sectors. However, TinyML’s
footprint is not negligible when scaled globally, and thus
designers must be mindful and factor in sustainability when
developing new devices. Emerging technologies may further
enable more sustainable computing practices and cement
the net-positive potential of TinyML.
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