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1 Introduction

The systems research community spends a lot of its time
optimizing systems to improve their performance and re-
duce resource requirements [6, 7, 13, 14, 16, 17, 20, 21].
We justify this research (to ourselves, our students and
funding bodies) by arguing that these optimizations im-
prove social utility: they make emerging technologies
(e.g., machine learning or video streaming) more ac-
cessible to users by reducing costs, they reduce envi-
ronmental impact by reducing the number of compute
and network resources that need to be deployed, and
allow new entrants into the market (encouraging further
price reductions and improvements) by reducing overall
deployment costs.

My thesis is that, in reality, many of the optimizations
discussed in the systems’ literature do not improve so-
cial utility, and instead they increase deployment costs,
and make technology less accessible to users, deployers
and developers. This leads to negative impacts on the
environment and more importantly negative impacts on
society, where it encourages the centralization of tech-
nology and eventually leads to an oligopoly.

The problems we are concerned about are not because
optimizing systems is bad, but rather because one com-
mon approach to optimization which we refer to as opti-
mization by specialization. This approach builds on the
observation that specializing systems to particular hard-
ware (e.g., specific CPUs, GPUs, NICs, offloads and net-
work interconnects), workloads (e.g., request rates, value
sizes, and popularity distributions), and deployment as-
sumptions (e.g., assumptions about who else might be
sharing processing and communication resources) can
yield performance and efficiency benefits for most sys-
tems. This approach lies at the core of many recent
trends in systems (including trends that I participated
in, benefited from, and continue to pursue), including
kernel bypass networking [7, 14, 20], systems that build
on RDMA or assume knowledge of communication la-
tencies [13], disaggregated memory systems [1, 2, 12],
systems that assume tensor cores or particular GPU fea-

NYU

tures [8], and systems that assume new device interfaces
and interconnects like CXL [12, 18].

My argument is not that we should not do this work,
they have scientific value, and are crucial to understand-
ing the design space and trade-offs that systems must
make. Rather, my argument is that we should not blindly
believe that deploying systems that have optimized by
specialization is a net positive, and we should be spend-
ing some of our efforts generalizing these optimizations.

My concerns stem from the observation that deploy-
ing these systems requires adding new hardware, in-
cluding servers, network switches and links, built using
recently released (or sometimes pre-release) hardware,
and then dedicating all (or most) of this newly deployed
hardware to a single system that performs one very spe-
cific function. For example, training clusters for large
language models, which are optimized using this ap-
proach require companies to buy new hardware, and
deploy new network fabrics. Conversations about these
clusters (both in private and in public forums such as
the HotOS panel on sustainable systems) are dominated
by concerns about the cost of this hardware, and supply
chain concerns that increase the time required to build
such a cluster. In many cases, the economic and environ-
mental cost of these clusters outweighs the optimization
benefits they provide. This is because the economic and
environmental costs of these clusters must be paid up-
front: deployers must pay the equipment costs, and we
all must pay for the environmental costs associated with
manufacturing [3] and powering [15] these clusters. Ben-
efits on the other hand are small, and while they add up
with each request, a substantial number of requests must
be served before they outweigh the costs. Few, outside
the largest providers, see sufficient requests within a sys-
tem’s lifetime (which is increasingly defined by time
before a competitor announces a better equivalent) for
the accumulated benefits to outweigh the costs.

This paper explores why we got here, i.e., why are
we optimizing by specializing? Then it discusses the
concerns we see with this approach. Finally, we suggest



some changes we can make as a community to address
this concern.

2 Optimizing by Specializing

Why do we optimize by specializing? Optimizing sys-
tems by specializing them is appealing for several rea-
sons. Superficially, it is both easy to empirically demon-
strate the benefit of optimizations, and easy to motivate
these works because they describe ways to use emerging
technologies.

Beyond these superficial reasons, optimization by spe-
cialization gives us a way to improve the performance
and efficiency of systems which have mature (and thus
well optimized) implementations, without requiring al-
gorithmic changes that can be either infeasible — either
because the algorithm is close to being theoretically opti-
mal or because we lack formal correctness requirements
(as is the case with algorithms in machine learning train-
ing where correctness is often based on evaluation) —
or require significant domain knowledge [4, 5, 10] and
might not be approachable by many. By contrast, opti-
mization by specialization requires using familiar tech-
niques to identify bottlenecks, devise new abstractions,
and demonstrate their efficacy.

Why do our evaluations not reflect the environmental
and economic costs of optimization by specialization?
At this point one might argue that the concerns I raised
above (deployment costs and lack of sharing) are things
that we can evaluate, and good systems papers likely
already include evaluations for costs. In a recent pa-
per [19], my colleagues and I discussed the problem
with measuring end-to-end costs for systems that in-
clude accelerators. The problem I raise in this paper is
harder because I am using a more expansive definition of
end-to-end (in that paper we were not concerned about
manufacturing costs) and we are talking about a wider
range of systems. Therefore, I believe (though it is hard
to cite a negative) that existing papers do not capture
these costs, and furthermore, I am not convinced that we
can enforce a meaningful evaluation standard that would
capture these costs.

One might argue that commercial deployment (e.g.,
the use of TPUs [9] or CDPUs [11] within Google, or the
use of Megatron [13] at other companies) demonstrates
that these costs are reasonable. However, we should be
careful when using such arguments. Companies balance
costs against benefits such as being first to market, show-

ing technical leadership, etc. Therefore, adoption corre-
lates with utility (does this help the company improve
its perceived outlook) rather than cost.

Why should we care about this problem? As I noted
previously, this paper is not arguing against research that
optimizes by specialization. In fact, I plan to continue
to working on this problem. My goal is to show that this
line of work comes at a cost, and this cost is both social
— we are designing systems that only a few of the richest
companies in the world can deploy — and environmental.
Therefore, we should find ways to encourage research
that generalizes the lessons from this research and makes
them more widely applicable. We discuss some ideas
for this next.

3 What should we do?

Our communities research direction is often influenced
by questions about how conferences and funding agen-
cies evaluate research. Therefore, I think we should be
more accepting of papers and research on systems that
are slower but more robust than the state-of-the art. I use
the term robust to describe systems that provide similar
performance and efficiency across a variety of different
deployments, including ones with different hardware,
different workloads, or when sharing resources with dif-
ferent colocated applications.

At the same time, we should also begin to evaluate
the systems we optimize by specialization to see what
happens when deployment assumptions are violated,
analyzing performance and efficiency when workload or
sharing assumptions are broken. We should also do the
same for cases when assumptions are made about the
deployment hardware, though this requires additional
work: a system might no longer function in the absence
of some hardware feature. Perhaps, in this case a more
robust design where the system falls back to using a
more widely available legacy implementations, would
both enable evaluation and be more desirable.

Finally, I hope that this short position paper leads
to other solutions, better than the ones I have outlined
above, and at least more detailed measurements and anal-
ysis that refute or support the thesis outlined here.
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