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Abstract
The sharply increasing sizes of artificial intelligence (AI)
models come with significant energy consumption and envi-
ronmental footprints, which can disproportionately impact
certain (often marginalized) regions and hence create envi-
ronmental inequity concerns. Moreover, concerns with so-
cial inequity have also emerged, as AI computing resources
may not be equitably distributed across the globe and users
from certain disadvantaged regions with severe resource
constraints can consistently experience inferior model per-
formance. Importantly, the inequity concerns that encom-
pass both social and environmental dimensions still remain
unexplored and have increasingly hindered responsible AI.
In this paper, we leverage the spatial flexibility of AI infer-
ence workloads and propose equitable geographical load
balancing (GLB) to fairly balance AI’s regional social and
environmental costs. Concretely, to penalize the dispropor-
tionately high social and environmental costs for equity, we
introduce 𝐿𝑞 norms as novel regularization terms into the op-
timization objective for GLB decisions. Our empirical results
based on real-world AI inference traces demonstrate that
while the existing GLB algorithms result in disproportion-
ately large social and environmental costs in certain regions,
our proposed equitable GLB can fairly balance AI’s negative
social and environmental costs across all the regions.

1 Introduction
In the rapidly evolving field of artificial intelligence (AI), a
significant transformation is underway with the emergence
of large foundationmodels as exemplified by Large Language
Models (LLMs) like GPTs [4] and Vision Transformers Mod-
els (ViTs) [8]. These cutting-edge AI models demonstrate the
ability to function effectively in diverse contexts, engaging
with extensive vocabularies and image data for unforeseen
AI tasks, i.e., zero-shot abilities. To serve inference requests,
they are typically deployed across geographically distributed
data centers for better service availability, lower transmis-
sion latency, and/or privacy regulations.
Environmental inequity. Powerful yet hungry, large

AI models require substantial resources not only during
training but also in deployment and inference. For some
popular AI services such as text and image generation, the
total energy consumption for inference can be comparable
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to or even exceed that for training, resulting in huge car-
bon emissions and freshwater usage [14, 32]. To curb the
growing environment footprint, many recent efforts have
been devoted to enhancing the efficiency and reducing the
energy consumption of AI models. Example strategies in-
clude model compression that reduces AI’s computational
demand for inference (typically at a sacrifice of model perfor-
mance) [17, 18] and geographical load balancing (GLB) that
leverages spatial heterogeneities to route more workloads
to low-cost and/or greener regions [6, 15]. Additionally, on
the infrastructure side, there has been a rise in the adop-
tion of carbon-free energy and climate-conscious cooling
system designs in the data center industry. For instance, uti-
lizing air-side economizers where climate conditions allow
has become increasingly common to cut the direct water
consumption [21].

While these approaches can effectively minimize AI’s total
environmental footprint, the rise of environmental inequity —
AI’s negative environmental impact can disproportionately
affects certain (often marginalized) regions [2, 15] — has be-
come increasingly worrisome, potentially leading to other
unintended social and ecological consequences andwidening
regional disparities. Importantly, the disproportional distri-
bution of AI’s environmental cost across different regions
can be amplified by existing approaches to managing AI sys-
tems (e.g., load distribution and AI model scaling) that often
prioritize the total environmental cost rather than the cost
borne by individual regions which are most environmen-
tally vulnerable [15]. Compounded by the sharply growing
demand, AI’s environmental inequity has received calls for
mitigation efforts from various organizations, such as UN-
ESCO [27], Meta [20] and the State of California [5].

Social inequity. Going beyond environmental footprints,
concerns with AI’s social inequity have also emerged [28].
For now, only a few major tech players have the resource
and capacity to train and deploy large AI models. Thus, due
to the uneven deployment of computing resources across
the globe, users from different regions may encounter vary-
ing AI model sizes and performances (e.g., larger AI models
typically imply better inference performance in terms of the
accuracy and task scores), leading to complex societal con-
sequences. For example, studies have indicated that people
are becoming increasingly reliant on LLMs for acquiring
knowledge, suggesting that subpar LLMs could jeopardize
the prospects of these individuals [25].Thus, AI’s potentially
unfair model performance has close relevance to its social
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inequity. Crucially, the existing environmentally conscious
approaches to AI system management (e.g., choosing larger
AI models with better performances/accuracies when there
are more solar energy available) may further reinforce AI’s
performance unfairness among users from different regions,
enlarging the social inequity.

Contributions.With the growing need for AI as a public
resource serving the broader society, it becomes increasingly
imperative to rectify AI’s emerging social and environmental
inequities and enable truly responsible AI [20, 24]. In this pa-
per, we focus on the AI inference stage and introduce a novel
equity-aware GLB algorithm to fairly balance AI’s social and
environmental costs across different regions. More specifi-
cally, we consider the performance cost of heterogeneous
AI models and the carbon and water footprints associated
with AI model inference by dynamically scheduling users’
inference requests (a.k.a. workloads) using GLB. When op-
timizing GLB decisions, we leverage 𝐿𝑞 norms in terms of
AI’s social and environmental costs as regularization terms
to penalize decisions that disproportionately affect certain
regions. In other words, regions with higher environmen-
tal and/or social costs will be prioritized and given a larger
weight when leveraging GLB to minimize the total cost. By
doing so, both the social and environmental costs of AI in-
ference are more evenly distributed across different regions,
thus mitigating AI’s social and environmental inequities.
To assess the effectiveness of our method on promoting

socially and environmentally equitable AI, we conduct a
simulation-based case study of 10 geographically-distributed
data centers serving inference requests for an LLMover an 18-
day period. Our empirical results demonstrate that while the
existing GLB algorithms result in disproportionately large
social and/or environmental costs in certain regions, our
proposed equitable GLB can fairly balance AI’s negative
social and environmental costs across all the regions.

2 Related Works
From the social fairness perspective, much attention has
been directed towards protecting groups with certain at-
tributes [16, 23, 30]. The issue is partially rooted in inherent
biases within datasets and could potentially be exacerbated
by models [16, 30]. To address such unfairness, numerous
strategies have been developed. For instance, [3, 19] suggest
removing sensitive attributes from datasets to prevent the
model from relying on them, while others adjust prediction
outcomes after training [22, 23]. Additionally, some have
advocated for equivalent metrics, such as error rates, among
specific groups [1, 7]. These studies typically focus on the
model training stage, but the attained fairness can be com-
promised if AI models of different sizes are not equitably
chosen for users from different regions. By stark contrast, we
focus on the AI inference stage and judiciously balance the

user requests from different regions across geographically
distributed data centers hosting heterogenous AI models.
To address AI’s environmental impacts, existing studies

primarily focus on minimizing environmental metrics such
as the total carbon emission, water footprint, or a weighted
combination thereof, to enable environmentally responsi-
ble AI model training and inference [6, 14, 32]. Nonetheless,
concerns with AI’s environmental inequity across differ-
ent regions have remained largely unaddressed. A recent
study [15] has proposed to tackle the uneven distribution of
AI’s regional environmental costs via GLB. But, this approach
overlooks the social equity dimension, which is equally, if
not more, important element of responsible AI.

3 Problem Formulation
We focus on the AI inference stage and consider a set of
pre-trained AI models denoted by K = {1, 2, · · · , 𝐾}, each
with different performance and energy consumption for serv-
ing an inference request. There are a set of geographically
distributed data centers N = {1, 2, · · · , 𝑁 } serving users
coming from a set of regions J = {1, 2, · · · , 𝐽 }.
Operational cost. At each time 𝑡 , data center 𝑖 dynami-

cally selects one or more of the available heterogeneous AI
models to serve the incoming workloads. More formally, we
denote 𝑦𝑘𝑖,𝑗 (𝑡) ≥ 0 as the workload dispatched from region 𝑗
to data center 𝑖 served through model 𝑘 at time 𝑡 . Given the
scheduled demand 𝑦𝑘𝑖,𝑗 (𝑡), we denote the energy consump-
tion and computational resources necessary for deploying
model 𝑘 in data center 𝑖 as 𝑒𝑖,𝑘 (𝑦𝑘𝑖,𝑗 (𝑡)) and 𝑟𝑖,𝑘 (𝑦𝑘𝑖,𝑗 (𝑡)), re-
spectively. For example, both 𝑒𝑖,𝑘 (𝑦𝑘𝑖,𝑗 (𝑡)) and 𝑟𝑖,𝑘 (𝑦𝑘𝑖,𝑗 (𝑡)) can
bemodeled as linearly increasing functions in terms of𝑦𝑘𝑖,𝑗 (𝑡).
Thus, the total energy consumption at data center 𝑖 can then
be calculated as

𝑒𝑖 (𝑡) =
∑︁
𝑗∈J

∑︁
𝑘∈K

𝑒𝑖,𝑘 (𝑦𝑘𝑖,𝑗 (𝑡)).

For notational simplicity, we define the set of workload
distribution decisions at time 𝑡 as 𝑦 (𝑡) = {𝑦𝑘𝑖,𝑗 (𝑡) |𝑖 ∈ N , 𝑗 ∈
J , 𝑘 ∈ K}. We also take the energy price 𝑝𝑖,𝑡 and power
usage effectiveness (PUE, which accounts for non-IT energy
overheads) 𝛾𝑖 of data center 𝑖 into consideration. As a result,
the total operational cost at time 𝑡 can be written as

𝑐𝑜𝑠𝑡𝑡 (𝑦 (𝑡)) =
∑︁
𝑖∈N

𝛾𝑖 · 𝑝𝑖,𝑡 ·

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑒𝑖,𝑘 (𝑦𝑘𝑖,𝑗 (𝑡))
 . (1)

Social inequity cost.We define the noramlized perfor-
mance cost of the AI model 𝑘 as 𝑠𝑘 (𝑦𝑘𝑖,𝑗 (𝑡)) = 𝑠𝑘 · 𝑦𝑘𝑖,𝑗 (𝑡) ≥ 0,
where 𝑠𝑘 ≥ 0 represents the inference performance degra-
dation cost for each request when using model 𝑘 compared
to the best possible model (usually the largest model [26]).
For example, when model 𝑙 has the best performance, its
performance cost is zero for any allocated request. Here,
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the performance cost can be measured in terms of various
metrics of an AI model (e.g., average inference accuracy and
score of an LLM for a set of target tasks, among others). Thus,
the total performance cost of the workload from region 𝑗

is computed as
∑

𝑖∈N
∑

𝑘∈K 𝑠𝑘 (𝑦𝑘𝑖,𝑗 (𝑡)), which, when normal-
ized by the total workload 𝜆 𝑗,𝑡 , represents the AI model’s
average social performance for users from region 𝑗 (i.e., a
type of group fairness [23]). To balance AI’s performance
for users from different regions, we introduce a social fair-
ness function 𝑓𝑡 (𝑦 (𝑡)) in terms of 𝐿𝑞 norm of the average
performance costs for users from different regions:

𝑓𝑡 (𝑦 (𝑡)) =

∑︁
𝑗∈J

[∑
𝑖∈N

∑
𝑘∈K 𝑠𝑘 (𝑦𝑘𝑖,𝑗 (𝑡))
𝜆 𝑗,𝑡

]𝑞
1/𝑞

, (2)

where 𝑞 ≥ 1 is a hyperparameter that promotes AI’s social
equity for users from different regions. Concretely, we only
care about the average AImodel performance across different
regions when 𝑞 = 1 (i.e., no consideration of AI’s social
equity), whereas we focus on minimizing AI’s worst regional
model performance when 𝑞 → ∞ (i.e., solely considering AI
model performance for users from the most disadvantaged
regions). The priorities for these two conflicting objectives
are adjusted by varying 𝑞 ≥ 1.
Environmental inequity cost. Carbon emissions asso-

ciated with fossil fuels and water consumption are the two
main non-negligible factors. Besides the global warming ef-
fects, carbon emissions have significant local effects such as
high air pollution and even elevated immortality rates [13],
thus making it necessary to balance AI’s regional carbon
emissions. Depending on the fuel mix for electricity genera-
tion, the carbon emission rate can vary significantly across
different physical locations and times of the day. Specifically,
the carbon emission of data center 𝑖 is denoted as 𝑐𝑖,𝑡 (𝑒𝑖 (𝑡)),
where 𝑒𝑖 (𝑡) is the total energy consumption for running
AI inference in data center 𝑖 at time 𝑡 . In general, an in-
creased proportion of carbon-intensive energy sources (e.g.
hard coals) directly correlates with higher carbon emissions,
impacting the function 𝑐𝑖,𝑡 (·). The water consumption of de-
ploying AI models is another important environmental cost
and can be divided into two categories: onsite and offsite [14].
For each data center, onsite water is evaporated to reject the
heat generated by servers into the outside environment (if
the data center uses cooling towers), or cool and humidify
the air entering the data center (if the data center uses air-
side free cooling) [14]. The offset water refers to the water
consumed for the electricity generation. In total, we define
the water consumption as𝑤𝑖,𝑡 (𝑒𝑖 (𝑡)), which considers both
onsite and offsite water and is linearly increasing with 𝑒𝑖 (𝑡)
depending on the runtime water usage effectiveness.

The total environmental cost of data center 𝑖 is defined as

H𝑖 (
𝑇∑︁
𝑡=1

𝑦 (𝑡)) =
𝑇∑︁
𝑡=1

[
𝜇𝑐𝑐𝑖,𝑡

(
𝑒𝑖 (𝑡)

)
+ 𝜇𝑤𝑤𝑖,𝑡

(
𝑒𝑖 (𝑡)

) ]
,

where the hyperparameters 𝜇𝑤 ≥ 0 and 𝜇𝑐 ≥ 0 convert the
carbon emission and water consumption to a single unit cost
and balance their relative importance. By applying the 𝐿𝑞
norm, the overall environmental inequity cost is defined as

𝑔(
𝑇∑︁
𝑡=1

𝑦 (𝑡)) =
[∑︁
𝑖∈N

(
H𝑖 (

𝑇∑︁
𝑡=1

𝑦 (𝑡))
)𝑞] 1

𝑞

, (3)

where𝑞 ≥ 1 prioritizes the minimization of AI’s environmen-
tal cost in more disadvantaged data center locations/regions.
In particular, when 𝑞 → ∞, (3) becomes AI’s worst environ-
mental impact over all the data center locations.

GLB objective.We formulate the optimization objective
of our socially and environmentally equitable GLB (called
SE-GLB) as follows:

min
𝑦 (𝑡 ),𝑡=1,· · · ,𝑇

𝑇∑︁
𝑡=1

𝑐𝑜𝑠𝑡𝑡 (𝑦 (𝑡)) +
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑦 (𝑡)) + 𝑔
(

𝑇∑︁
𝑡=1

𝑦 (𝑡)
)

+
𝑇∑︁
𝑡=1

∑︁
𝑖∈N, 𝑗∈J,𝑘∈K

𝑦𝑘𝑖,𝑗 (𝑡) · 𝑑𝑖 𝑗 ,

(4a)

𝑠 .𝑡 .
∑︁
𝑖∈N

∑︁
𝑘∈K

𝑦𝑘𝑖,𝑗 (𝑡) = 𝜆 𝑗,𝑡 ,∀ 𝑗 ∈ J , 𝑡 = 1, · · · ,𝑇 , (4b)

∑︁
𝑘∈K

𝑟𝑖,𝑘
©«
∑︁
𝑗∈J

𝑦𝑘𝑖,𝑗 (𝑡)
ª®¬ ≤ 𝑀𝑖 ,∀ 𝑖 ∈ N , 𝑡 = 1, · · · ,𝑇 (4c)

In (4a), the term
∑

𝑖∈N, 𝑗∈J,𝑘∈K 𝑦
𝑘
𝑖,𝑗 (𝑡) · 𝑑𝑖 𝑗 accounts for the

total moving cost for scheduling user requests from region
𝑗 to data center 𝑖 , where 𝑑𝑖 𝑗 represents the moving cost for
scheduling one unit of request (e.g., in proportion to the dis-
tance between region 𝑗 and data center 𝑖). The constraint (4b)
means that we need to schedule all the user demand 𝜆 𝑗,𝑡 for
each region 𝑗 without request dropping, and the constraint
(4c) denotes the computational resource constraint for AI
inference in each data center 𝑖 . Note that we can also easily
add other constraints such as workload routing constraints
(i.e., user requests from region 𝑗 can only be routed to certain
data center locations due to data sovereignty regulations or
latency constraints).

Compared to the existing literature on GLB that typically
minimizes the total cost or focuses on the environmental
impact [9, 15], the key novelty of our formulation is to holis-
tically address AI’s social and environmental inequities by
using 𝐿𝑞 norms to penalize GLB decisions that lead to dis-
proportionately high social and/or environmental costs in
certain disadvantaged regions.

4 A Case Study
We run a simulation study to preliminarily validate SE-GLB
to mitigate AI’s social and environmental inequities.
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4.1 Setup
We consider 10 geographically distributed data centers: four
in the U.S. (Virginia, Georgia, Texas, and Nevada), four in
Europe (Belgium, the Netherlands, Germany, and Denmark),
and two in Asia (Singapore and Japan). Each of these loca-
tions hosts a large number of data centers. We also consider
10 regions, each corresponding to one distinct data center
location in our experiments. To highlight the potential of
equity-aware GLB, we consider full GLB flexibility, where
workloads can be dispatched from any region to any data
center. To host an LLM inference service, each data center
contains a cluster of 150 identical Nvidia DGX A100 servers
each equipped with eight NVIDIA A100 GPUs and a maxi-
mum power of 6.5kW. Excluding other services beyond our
scope, each data center has a maximum AI inference server
power of ∼ 1MW. The data center PUE is set as 1.1 to adhere
to efficient operation standards. The regional environmental
impact is assessed using a weighted combination of carbon
and water footprints. For inference, we assume three LLMs
of different sizes are available: Llama-2-7B, Llama-2-13B, and
Llama-2-70B [26].
Datasets. We utilize the GPU power trace spanning 18

days as used in [15]. We gather evaluation scores of Llama-2
fromHuggingFace [31] across the model sizes of 7𝐵, 13𝐵, and
70𝐵 on benchmarks AI2 Reasoning Challenge, HellaSwag,
and Truthful QA.We then average and normalize these scores
for measuring AI’s performance costs. Hourly energy prices
across the 10 data centers are obtained from [10] for Eu-
rope and Asia, and from their respective ISOs for U.S. data
centers [29]. Hourly weather data from [11] is utilized to
calculate wet bulb temperature from dry bulb temperature
and relative humidity. On-site WUE is determined using an
empirical formula from [12].

Evaluationmetrics.We consider four metrics: 1) average
energy cost, calculated as the total energy cost over 18 days
divided by the number of data center locations; 2) average
environmental footprint and social cost, representing the total
carbon emission, water footprint, and performance cost by
the number of data center locations; 3)maximum regional en-
vironmental footprint and performance cost, which identifies
the highest environmental and performance costs among the
10 data center locations and user regions; 4) max/avg ratio,
representing the ratio of the maximum cost to the average
cost for relative comparison. A lower value on this metric
indicates a more equitable solution.
Baselines. 1) Cost-GLB: This algorithm optimizes the

average energy cost and the performance cost. It can also
be seen as a special case of SE-GLB where 𝜇𝑐 and 𝜇𝑤 are set
as zero and 𝑞 = 1. 2) All-GLB: This algorithm minimizes
the weighted sum of the energy cost, environmental cost
and societal cost (i.e., 𝑞 = 1) based on [12]. 3) E-GLB: The
environmentally equitable GLB algorithm which is studied
in [15] and does not address AI’s social inequity. Note that

Table 1. Comparison between different GLB algorithms.

Metric Algorithm
Cost-GLB All-GLB E-GLB SE-GLB

Energy (US$) avg 83524 92945 101106 108197

Water (m3)
avg 476.72 465.44 433.24 456.58
max 1410.92 842.44 652.72 649.41

max/avg 2.96 1.81 1.51 1.42

Carbon (ton)
avg 36.720 32.090 29.548 32.163
max 110.275 55.491 41.923 48.054

max/avg 3.00 1.73 1.42 1.49
Normalized avg 0.262 0.244 0.268 0.248
Performance max 0.449 0.353 0.313 0.253

Cost max/avg 1.71 1.45 1.17 1.02
Performance avg 57.83 58.11 57.74 58.05

Score min 54.94 56.43 57.04 57.98

we do not consider the baseline that solely minimizes energy
cost, as this approach would simply force the data centers to
always choose the smallest model for inference.

4.2 Results
We run an offline optimizer with all the future information
in our case study, while online algorithms that optimize GLB
without knowing future information are left as our future
work. In Table 1, we show the cost comparison between base-
lines and SE-GLB. By default, the weights assigned to carbon
emission and water consumption are 𝜇𝑤 = 60 (US$/𝑚3) and
𝜇𝑐 = 1500 (US$/ton), unless otherwise specified. We can ob-
serve that Cost-GLB has the lowest energy cost compared
to other GLB approaches since it prioritizes the energy cost
minimization. However, it also leads to the highest aver-
age carbon emission and water consumption. Additionally,
Cost-GLB exhibits the highest max to average ratio in terms
of social and environmental equities. Therefore, solely opti-
mizing for energy cost can overburden certain regions with
excessive workloads and worsen the AI’s inequity. By com-
parison, All-GLB takes a weighted sum of energy cost and
the environmental footprint, which reduces average water
consumption and carbon emission. E-GLB further reduces
the max to average ratio of environmental footprint by min-
imizing the 𝐿𝑞 norm of AI’s environmental impact across
different locations. SE-GLB explicitly considers the 𝐿𝑞 norms
of both social and environmental costs, thereby achieving a
more equitable distribution of AI’s model performance and
environmental impact across different user regions and data
center locations. While this comes at an increased energy
cost due to the conflict between equity and energy cost min-
imization, we argue that the cost increase is acceptable in
order to mitigate AI’s inequity that would otherwise create
unintended socio-ecological consequences as people increas-
ingly rely on AI.

5 Concluding Remarks
In this work, we holistically consider AI’s social and envi-
ronmental equity and propose novel equity-aware GLB to
balance AI’s regional social and environmental costs towards
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responsible AI. Our key novelty is to introduce 𝐿𝑞 norms
to penalize GLB decisions that would otherwise lead to dis-
proportionately high social and/or environmental costs in
disadvantaged regions. Our empirical evaluation has shown
the effectiveness of our proposed approach in improving
both social and environmental equity by prioritizing the
most disadvantageous data centers and user regions.
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