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Abstract
Modern computer systems have an unprecedented environ-
mental impact in the form of electronic waste at the end-of-
life. Computer systems contain several hazardous materials
whose improper disposal can lead to detrimental ecological
and public health impacts due to their embodied toxicity. In
this paper, we focus on developingmethodologies to quantify
the component-wise makeup of computer systems and as-
sess their toxicity impact to inform more sustainable design
choices.

1 Introduction
In today’s digital age, computer systems have become indis-
pensable tools facilitating everything from global connec-
tivity and entertainment to everyday tasks. However, the
widespread adoption of technological devices coupled with
the rapid pace of innovation has led to a significant growth
in the annual production volume of such products, which
has consequently given rise to an enormous electronic waste
problem.
The ever-increasing amount of electronic waste has be-

come a global environmental issue [11]. As of 2019, more
than 50 million metric tons of e-waste was generated world-
wide [7], of which only 17.4% was formally collected and
recycled while the rest is eventually landfilled or incinerated.
Electronic devices like computer systems contain a multi-
tude of hazardous materials, including metals and organic
compounds [5]. Improper disposal of these devices at the end-
of-life can result in significant harm to both the environment
and human well-being.
Addressing the e-waste problem requires a multifaceted

approach, one in which system designers play a pivotal role
by implementing sustainable design practices, such as creat-
ing modular systems for easier recycling, prolonging product
lifetimes, and minimizing the use of hazardous materials in
system components. However, to attain this objective, it is
crucial to first quantify the environmental and human health
repercussions of e-waste generated by computer systems
at the end-of-life. By doing so, we can pinpoint the most
hazardous components and devise strategies to minimize or
eliminate their usage.
Measuring the e-waste impact of computer systems is a

challenge owing to the lack of information on the quantity or
dimensions of different components utilized in its assembly.
Additionally, the material composition of these components
is also not public information. In this paper, we focus on
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tackling the first challenge by formulating approaches to
quantify the variety of components present in computer
systems leveraging image recognition and object detection
strategies.

2 Background
More than 80% of e-waste is improperly handled and ends
up being landfilled or incinerated [7, 18]. Around 7-20% of
e-waste generated in developed countries travels transbound-
ary to low- and middle-income countries [7]. About 80% of
the e-waste that is sent for recycling in developed countries
also meets the same fate [16]. As a result, all this e-waste
ends up in developing world, which lacks the proper in-
frastructure for recycling, leading to e-waste being handled
informally [2].
Informal recycling of e-waste exposes workers to haz-

ardous substances that can lead to both cancerous and non-
cancerous diseases [10, 16]. Not only the workers but ev-
eryone who lives near an informal facility gets chronically
exposed to pollutants through inhalation or contaminated
food and water supply. The ill effects of e-waste eventually
make their way to humans and various other species who
live farther away by ultimately contaminating the food chain
and drinking water [2, 16]. Thus, the hazardous chemicals
present in e-waste make it a huge safety risk both for human
health and the environment.

Modern computer systems contain more than 60 elements
from the periodic table [12]. Several metals utilized in com-
puter systems, like lead, mercury, arsenic, and nickel are
extremely detrimental for human health and the environ-
ment [10, 14]. Certain organic compounds like brominated
flame-retardants and Polyvinyl Chloride (PVC), are also ex-
tremely harmful to humans [10]. Further, the plastics present
in e-waste are responsible for GreenHouse Gas (GHG) emis-
sions [20]. Computer systems also utilize conflict miner-
als (gold, tin, tantalum, tungsten), which are responsible for
perpetuating social and humanitarian issues [3]. As a result,
computer systems have a manifold detrimental impact on
both human well-being and the environment when improp-
erly handled at end-of-life.

3 E-waste Footprint
Computer systems encompass many components with differ-
ent structures and functionalities, ranging from the Printed
Circuit Board (PCB), processors, memory modules, and stor-
age devices to components like casing, display, cooling ele-
ments such as fans, and batteries in battery-powered devices.
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Some components, like the PCB and processors, further com-
prise different active components like amplifiers and transis-
tors, as well as passive components, such as resistors and ca-
pacitors. Computer systems like smartphones, laptops, PCs,
and servers comprise these components in varying sizes and
material compositions.

With respect tomaterial composition, various components
of computer systems exhibit distinct characteristics. Batter-
ies and PCBs have the highest fraction of metals by weight in
computing devices [17]. PCBs also harbor the highest diver-
sity of metals and their compounds in a computer system [4],
owing to various components present on the PCB, like re-
sistors, capacitors, and integrated circuits. The displays and
touchscreen in smartphones can contain several rare-earth
metals [1]. Processors and memory systems contain precious
metals like gold and silver [6]. The composition of different
components influences the overall toxicity footprint of a
computer system at the end of its lifetime.

Accurately assessing the toxicity footprint of a computer
system requires knowledge of the dimensions and quantities
of each component present in the system, along with their
material compositions. For instance, we need information
about the number of integrated circuits on the PCB of a lap-
top and the material makeup to determine their proportion-
ate contribution in the overall toxicity impact of the laptop.
Similarly, the dimensions of the display of a smartphone,
along with material composition, are required to calculate
its toxicity impact.
In this work, we develop object detection techniques to

identify and enumerate various components within a com-
puter system, ultimately enabling the assessment of the toxi-
city impact associated with these systems. Furthermore, the
precise localization of different components utilizing these
techniques can significantly improve recycling efforts lead-
ing to better e-waste management.

4 Methodology
In this section, we outline our methodology for designing
the pipeline to identify and count different components of
a computer system using object detection techniques. We
focus our discussion on components present on the PCBs
of computer systems, owing to their diversity and density.
Nonetheless, a similar approach can be extended to other
components of computer systems like displays, processors,
memory, and so on.

4.1 Dataset
To utilize object detection techniques for component identi-
fication, we require a dataset of high-resolution PCB images.
Only a handful of public datasets of PCB images exist [13, 15],
collected primarily for quality assurance. These datasets also
do not necessarily contain the labels of various components
or PCBs images of servers, smartphones, or PCs.

As a result, we collect our own dataset of high-resolution
PCB images sourced from the internet. Our dataset comprises
54 images of PCBs from servers, smartphones, and PCs. We
manually label PCB components from 5 component classes,
namely resistors, large capacitors, small capacitors, induc-
tors, and integrated circuits. Currently, we do not distinguish
between different components of the same component class.
For instance, all surface-mount resistors with different sizes
and ratings belong to the same component class. We par-
tition the dataset into training, validation, and testing sets
using a 70-10-20 ratio.

4.2 Object Detection for Component Identification
We leverage state-of-the-art object detection algorithms for
component identification, namely - RCNN [9], Fast-RCNN [8]
and YOLO [19]. Object detection algorithms identify the com-
ponents and classify them into relevant component classes.
We also utilize this information to count the number of com-
ponents detected for each class.

4.3 Evaluation
We evaluate the accuracy of object detection algorithms
using Mean Average Precision (mAP), Precision, and Recall
metrics. Further, we also calculate the difference between
the actual count and the detected count for components of
each class.

5 Further Work
Numerous avenues for improvement exist in the component
identification and enumeration pipeline. First, our dataset is
relatively small and we consider a limited number of com-
ponent classes. Second, the object detection algorithm for
component classification is challenging to implement with
high accuracy due to several reasons. For instance - the small
size of components like resistors can make them hard to de-
tect, and the size and density of the components of the same
class can vary significantly across PCBs. To address these
challenges, we intend to increase the size of our dataset,
as well as refine the object detection algorithm to enhance
accuracy.
Further, we plan to expand the methodology to incorpo-

rate other components of computer systems like displays,
casing, memory and storage devices. For instance, we can
calculate the size of smartphone displays using object local-
ization and dimension detection techniques.
Finally, utilizing our model and information about mate-

rial composition of components of interest in a computer
system, we can calculate their environmental and human
health toxicity impact at the end-of-life - which is crucial to
inform sustainable design decisions and improved e-waste
management practices.
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