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Abstract
The growth of sensing devices enables a wide range of previ-
ously untenable applications from sustainable agriculture to
wildlife monitoring. At the same time, this growth necessi-
tates considering the sustainability impact of these devices.
Such devices capture sensor data, process it locally and radio-
transmit it to the cloud via internet-enabled basestations.
While some prior work has begun inspecting emissions at
a device level, we need to understand the carbon impact
of the entire sensing pipeline — from the sensing device to
the cloud. Simply focusing on the device leaves several end-
to-end impacts unexplored, both negative and positive. In
this paper, we describe this end-to-end view of the sensing
pipeline and show how one design decision in the sensing
device affects the entire pipeline’s carbon impact.

1 Introduction
Wireless embedded sensor devices enable a wide range of
important applications, from sustainable agriculture [5] to
wildlife monitoring [20] and urban sensing [7]. These devices
collect information from their environments, using on-device
sensors and microcontrollers, while drawing power from
a battery or harvested energy. The past decade has seen
such devices becoming cheaper and more compact, with
increasing hardware-software support from academia [7, 10,
19] and industry alike [4]. A recent report [15] predicts that
there will be a trillion sensor devices deployed by 2035.
Unfortunately, as sensor deployments grow in size, their

environmental impact becomes an important factor to con-
sider. Given the pressing need for minimizing carbon emis-
sions across computing domains [13, 17, 18], we must study
the carbon footprint in deploying and maintaining sensing
devices for an ethical and sustainable future. Few emerging
efforts have begun exploring this issue, providing carbon
models for sensor maintainence [23], desiging devices to
‘transient‘ [6] and considering recycled components when
designing circuits [21]. Such efforts mainly focus on individ-
ual sensor devices.
* Both authors contributed equally to this work.

However, optimizing just sensing devices’ carbon leaves
out large pieces of the sensing pipeline needed to understand
the end-to-end carbon impact of sensing. More specifically,
once sensing devices collect data they need to transmit it
using an on-device radio through a communication layer
to a cloud-based datacenter. The data movement and subse-
quent cloud operations are an important part of sensing’s
carbon overhead, particularly since datacenter sustainability
is simultaneously garnering increasing attention [13, 22].
However, these datacenter optimizations are also happening
without knowledge of the rest of the pipeline [1, 24, 26].

In this work, we draw attention to the end-to-end sensing
pipeline, and how policy decisions made at any point in
the pipeline can have an impact on sustainability across the
pipeline. We assert that sustainability research in sensing
deployments will be effective and ethical when it accounts for
such end-to-end impact.
This end-to-end impact can manifest either negatively —

losses we need to avoid — or positively — opportunities we
can exploit. As an example of negative impact, a sensing de-
vice might save its battery by offloading data processing onto
the cloud, a strategy that elongates battery life and reduces
carbon costs of battery replacements. However, the offloaded
processing engages computing and storage on the datacen-
ter, incurring additional carbon emissions. This might lead
to an overall loss in terms of carbon impact; avoiding such
negative impact requires careful characterization and mod-
eling of cross-pipeline effects and dynamic systems that can
globally optimize for carbon impact.

On the positive side, consider a sensing device which uses
on-device machine learning (ML) to identify and transmit
only the inputs that are interesting to the application. Such
a device may also transmit the prediction scores along with
‘interesting‘ images, so that a datacenter scheduler can use
them to perform carbon-aware scheduling. An example of
carbon-aware scheduling could be where high-confidence
‘interesting‘ images are processed with low-latency, while
low-confidence ‘interesting‘ images are processed in lower-
priority batches.
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Figure 1. Figure shows a sensing pipeline where sensor devices col-
lect and transmit data to internet-enabled basestations, where the
data is exposed to the end user via the cloud-based datacenter. We
assert that sustainability efforts targeting sensing pipelines should
account for end-to-end impact, instead of focusing on separate
segments of the pipeline.

Through this paper, we present a call-to-arms for sustain-
ability efforts to focus on end-to-end impact, as opposed to
focusing on separate segments of the sensing pipeline. We
first present the sensing pipeline (section 2) and then dis-
cuss a case study: adding on-device ML to sensing devices
(section 3).

2 End-to-end Sensing Pipelines
We believe that the carbon footprint of sensing devices needs
to be taken holistically: from the sensing device deployment
to the communication layer between the sensing devices
and data center to the offloaded compute and storage in the
datacenter. Changes to deployments and sensing algorithms
can cause effects back to the datacenter, both increasing or
decreasing the sustainability of this entire sensing-pipeline.
As seen in Figure 1, there are three main components of our
sensing pipeline: the sensing devices, the communication
layer, and the datacenter. Each component causes carbon
emissions.

Sensing devices. The sensing pipeline starts with the sen-
sor device deployments. Once deployed, these devices then
operate their sensors to collect data, often do preliminary
data analysis, and eventually send that data back to the cloud.
Sensing, processing data, and sending data all require energy
— a limited resource on sensing devices that are reliant on
battery capacity or harvesting energy from the surround-
ing [7, 9, 16]. These devices have inherent carbon emissions
from manufacturing and deploying the devices, but also em-
body additional carbon each time the battery has to be re-
placed.

Communication Layer. When the sensor collects data,
it has to forward that data to be processed and permanently
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Figure 2. Figure shows the net carbon impact for a smart agricul-
ture application, comparing different methods of capturing sensor
data (temperature, humidity). We observe that the using efficient
computing methods, and/or replacing the battery with harvested
energy reduces the maintainence costs (in terms of carbon) associ-
ated with battery replacements.

storage through a communication layer. A common archi-
tecture of this layer is for individual sensors to wirelessly
send their updates to a base station that is physically close to
each of the servers [8]. The basestation is connected to the
internet and forwards the data to the desired endpoint — typ-
ically the datacenter. In this part of the pipeline, emissions
comes from creating and running the basestation and the
internet infrastructure — which needs to be appropriately
accounted for between different internet users.

Datacenter. Once the data arrives at a datacenter, the
data is routed to server to injest that data into a database
or storage system. At the same time, for time-sensitive ap-
plications, this data will be forwarded to a stream-analytics
framework and be added to batch analytics [3, 25]. Ultimately,
these tasks require time on a compute server, whether for
real-time processing or batch processing, and space in the
distributed storage system. Importantly, the carbon emis-
sions overheads here are dependent on the amount of data
coming in.

3 Case Study: Sensor nodes with ML
We now present a case study to demonstrate the importance
of holistic, end-to-end sustainability analysis when it comes
to sensing pipelines. We consider a smart agriculture ap-
plication [5] as the reason to deploy sensor devices. The
application requires periodic temperature and humidity in-
formation from several locations along a 100 sq. mile farm.
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Choice of sensing technology. The first important choice
for this application is how we are deploying sensors, show-
ing both the importance of deploying sensors and optimizing
the carbon emissions of these sensors. Figure 2 shows the
net carbon emissions from the smart agriculture application,
for several methods of sensing.

We compare three systems: manual sensing where a mon-
itoring person drives to each location and logs the required
information, a battery-powered sensor deployment, and an
energy-harvesting sensor. Manual sensing accrues carbon
emissions as the user has to drive around to each location
periodically (once in two months in our example). We com-
pare this with a battery-powered sensor, similar to the one
proposed in [23], deployed at each location. Each device is
equipped with a Ambiq Apollo 4 microcontroller [2], a tem-
perature+humidity sensor and a LoRa radio [14], all powered
using three AA batteries (2800mAh). The device captures
one-minute-long data once every five minutes, sending an
averaged digest once every hour over the radio. Deploying
multiple battery-powered devices incurs embodied carbon
at deployment time, and incurs periodic carbon emissions
when the user has to drive to each location for replacing
batteries.

We see that even with these carbon overheads, deploying
sensors allows capturing significantly finer-grained informa-
tion, while reducing carbon emissions in the longer run com-
pared with manual sensing.To further optimize the carbon
emissions for sensing devices, one can consider improving
the efficiency of on-device compute (using newer architec-
tures like [10]) and/or entirely replacing the battery with
energy harvester (e.g. solar cells like in [7]). Using more effi-
cient compute allows the battery to last longer, resulting in
fewer battery replacements and associated carbon emissions.

Even these optimizations do not approach the carbon emis-
sions from harvested energy, which eliminate batteries com-
pletely including the embodied and periodic carbon emis-
sions associated with batteries. Operating sensing devices
on harvested energy is an emerging field of on-going re-
search, and needs further developments to be reliable and
commercially viable.

On-device ML. Prior work [7, 11, 16] has proposed using
on-device machine learning (ML) techniques to identify and
transmit only the data that is ‘interesting‘ to the applica-
tion. Uninteresting data is to be discarded. On-device ML
significantly reduces the data transmitted from the device.
If the device is bottlenecked by radio energy, on-device ML
improves overall energy-efficiency of the device and causes
the battery to last longer – a sustainability win. If the de-
vice is bottlenecked by compute energy, on-device ML might
worsen the energy-efficiency of the device and cause the
battery to drain faster – an apparent sustainability loss.
If a sustainability-aware system designer were to focus

only on the device, they might determine that on-device ML
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Figure 3. Figure shows the embodied carbon impact for storing
sensor data (example shows images collected once per second). We
observe that using ML on the sensing devices makes has many
downline impacts on the carbon emissions of the pipeline — includ-
ing cutting emissions and allowing better storage choices.

is bad for the environment in some cases. However, this ar-
gument fails to account for the carbon emissions caused on
the datacenter side for uninteresting data. Figure 3 shows the
carbon emissions [12] associated with storing sensor data
(images in our example). We study the emissions for storing
data on Flash drives and Hard Disk Drives (HDDs), where
the sensor device does not perform on-device ML. We also
study a case where the sensor device only sends ‘interesting‘
images, which are then stored on HDDs in the datacenter.
We observe on-device ML can provide large wins on the dat-
acenter side, by using significantly less storage and leading
to longer storage lifetimes. These opportunities can only be
found by studying the end-to-end carbon impact in sensing
pipelines to determine if a local policy benefits sustainability
or not.

Holistic-impact studies inspiring research directions.
Along with determining whether a sustainability policy is
beneficial or not, studying the carbon impact across end-
to-end sensing pipelines also can open new avenues for
research. As an example, if the sensor device transmits ‘in-
teresting‘ data along with its associated prediction scores,
the datacenter scheduler could process the received data in
different ways based on the received scores. Data indicated
as ‘interesting‘ with low-confidence could be relegated to
latency-insensitive batch processing for generating larger
carbon wins. Such data annotations could also inform intel-
ligent caching on the storage side, where low-probability
‘interesting‘ data could be stored on carbon-cheaper storage
leading to sustainability wins.
Another line of research investigation could look at dis-

tributing applications across sensor nodes in a carbon-efficient
manner. The activity on each individual sensor node might
be dynamically variable, depending on its deployment en-
vironment. For example, sensors tracking cattle might see
different amounts of activity depending on where they are
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deployed. Further, each device might have a different amount
of resources at any given time (compute capability, battery
charge, etc). The datacenter could use such activity statistics
and per-device hetergeneity to inform device-level policies,
optimizing sustainability across the entire sensing pipeline.

4 Conclusion
In this paper, we presented a call-to-arms for researchers
to focus on the end-to-end sustainability impact in sensing
pipelines. We presented examples motivating the deploy-
ment of sensor devices, along with unintuitive conclusions
that can be drawn when studying the entire sensing pipeline.
We presented some directions for future research that can
exploit this end-to-end impact. By making sustainability re-
search efforts more holistic in sensing pipelines, researchers
can avoid unintended worsening in carbon emissions. Study-
ing end-to-end impact will also unlock new research and
smarter carbon-aware policies, resulting in a more ethical
and sustainable approach to sensing.
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